Sensitivity to evidence in Gaussian Bayesian networks using mutual information

نویسندگان

  • Miguel Ángel Gómez-Villegas
  • Paloma Main
  • Paola Viviani
چکیده

We introduce a methodology for sensitivity analysis of evidence variables in Gaussian Bayesian networks. Knowledge of the posterior probability distribution of the target variable in a Bayesian network, given a set of evidence, is desirable. However, this evidence is not always determined; in fact, additional information might be requested to improve the solution in terms of reducing uncertainty. In this study we develop a procedure, based on Shannon entropy and information theory measures, that allows us to prioritize information according to its utility in yielding a better result. Some examples illustrate the concepts and methods introduced. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interestingness filtering engine: Mining Bayesian networks for interesting patterns

In this paper, we present a new measure of interestingness to discover interesting patterns based on the user’s background knowledge, represented by a Bayesian network. The new measure (sensitivity measure) captures the sensitivity of the Bayesian network to the patterns discovered by assessing the uncertainty-increasing potential of a pattern on the beliefs of the Bayesian network. Patterns th...

متن کامل

Maximum Mutual Information Principle for Dynamic Sensor Query Problems

In this paper we study a dynamic sensor selection method for Bayesian filtering problems. In particular we consider the distributed Bayesian Filtering strategy given in [1] and show that the principle of mutual information maximization follows naturally from the expected uncertainty minimization criterion in a Bayesian filtering framework. This equivalence results in a computationally feasible ...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks

Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...

متن کامل

Sensitivity analysis of extreme inaccuracies in Gaussian Bayesian Networks

We present the behavior of a sensitivity measure defined to evaluate the impact of model inaccuracies over the posterior marginal density of the variable of interest, after the evidence propagation is executed, for extreme perturbations of parameters in Gaussian Bayesian networks. This sensitivity measure is based on the Kullback-Leibler divergence and yields different expressions depending on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2014